

EDUCATION

Fibre Channel Technologies "Current & Future"

Presenters:

Dr. M. K. Jibbe, LSI Logic (ESG)
Tom Hammod-Doel, LSI Logic (ESG)
Steven Wilson, Brocade Communications Systems, Inc.

2/28/2007

SNIA Legal Notice

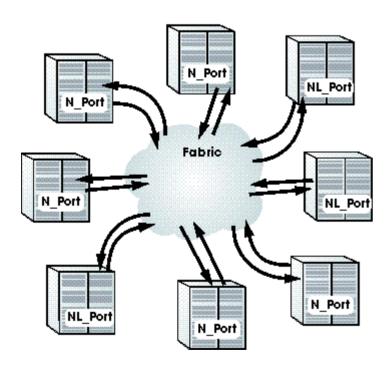
- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.

Abstract

The objectives of this tutorial are:

- Provide the user with a Primer on Fibre Channel
- Project the market outlook and roadmap of Fibre Channel
- Share what is New in Fibre Channel Standards for Protocols APIs, and Management.

What can FC provide today?



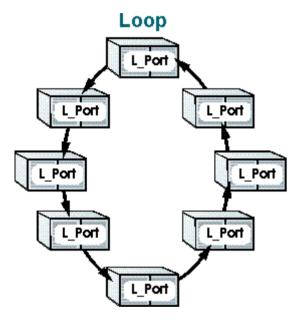
- **EDUCATION**
- Flexible, Scalable relative to Topologies, Speed, Performance, Distance, Node connectivity and Low cost
- Communication and Data Overhead (Framing, Data Communication, Latency, Efficiency, Routing Control, and Access Control),
- 3. Redundancy, Availability, and Failover,
- Applicability in SAN (Easy of use), with large IT User Base

FC Topologies

Fabric
NL-Port can be attached to a Fabric

Switched Fabric

Up to 2/24 ports in a switched interconnect


Multiple concurrent communications for high aggregate throughout

- Fibre channel supports a 24-bit address space
 - ✓ Provides 2 ^2⁴ addresses
 - √FC routing is done based on NPort ID
 assigned on login (24-bit addressing consisting
 of Domain ID, Area ID, and Device ID)
- FC Device ports are uniquely identified by a MAC ID (Worldwide Name)
- Address lookup is provided by the Fabric Switch using the Name Server portion of Directory Services

EDUCATION

Arbitrated Loop → **Up to 127 ports on a shared loop**

Point to Point

Point-to-Point → **Two ports on a dedicated link**

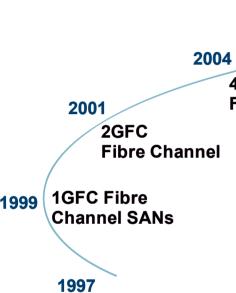
Topology Comparison

EDUCATION

Attribute	Point to Point	Arbitrated Loop	Switched Fabric
Number of ports	2	2 to 127	Up to 2
Maximum bandwidth	Link rate times 2	Link rate times 2	Link rate times number of ports
Bandwidth allocation	Dedicated	Shared by all loop ports	Managed by fabric
Address assignment	N_Port Login	Loop initialization and Fabric Login	Fabric Login
Number of concurrent circuits	1	1	Number of port pairs (number of ports/2)
Effect of port failure	Point-to-point link fails	Loop fails (port bypass function required)	Link between switch and port fails
Concurrent maintenance	Link is down	May be disruptive to entire loop	Link between switch and port is down
Expansion	Add additional point-to-point links	Attach loop to fabric	Expand fabric
Redundancy/High Availability	Add redundant port and point-to-point links	Use dual loops and dual-ported devices	Use redundant switches
Link rates supported	All	All (all devices on loop must be same rate)	All (fabric may support mixed rates)
Media types supported	All	All	AII
Classes of service supported	All	Class-1, -2 -3	All
Frame delivery order	In order	In order	Note 1
Access to interconnect mediun	Dedicated	Arbitration	Dedicated
Cost per port	Port cost	Port cost + loop function (+hub if used)	Port cost + fabric port

Note 1: Frame Delivery Ordering is switch implementation dependent

Flexibility and Scalability



- Uses a common transport mechanism to support:
 - Physical interface types: Multi/Single Mode Fiber, and Cu
 - Traditional Channels: SCSI, IPI3, SBCCS, and HIPPI
 - Traditional Networks: IP, IEEE 802, and ATM
- High-speed -100/200/400/800/1200 MB/s, Reliable data transmission:
 - 100/200/400/800/1200 MB/s
 - BER < 10^{-12}
- Provide scalability of performance and cost
- Encourage industry support through open standards
- Designed to fulfill the needs of SANs

Speed

EDUCATION

Fibre Channel

Future 8/16GFC **Fibre Channel**

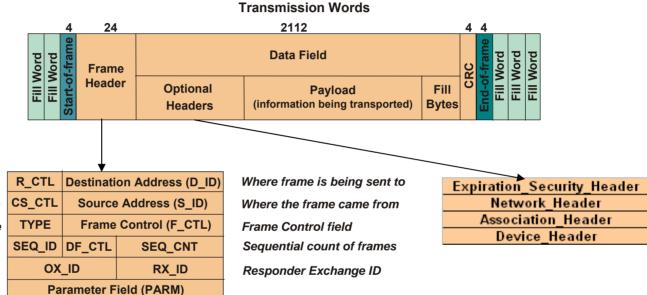
4/10GFC **Fibre Channel**

Established in late 1980s, first standardized by ANSI T11 in 1994

- 4GFC & 10GFC TODAY! 8GFC & 20GFC in 12 18 months
 - ISL rates to keep step with edge rates at 2.5x-3x bandwidth premium over edge rates
 - 4G edge uses 10G ISL, 8G edge uses 20G ISL, 16G edge uses 40G ISL, etc..
- \$9.9B Fibre Channel SAN Market in 2007 & growing faster than total storage market
- Over 50% of all external storage is FC and over 90% of all SAN is FC
- TB of FC: 604K 2005, 1.4M 2007, forecast to hit 4.4M Terabytes of FC storage by 2010 (50% CAGR)
- FC Switch and HBA port count growing at 35% CAGR
- 4GFC at the same price as 2GFC and 1Gb/s Ethernet
- 4GFC is plug-compatible with 1 and 2GFC (devices auto negotiate w/o user intervention)
- Applications are driving higher data rates (i.e. Video, back-up times; more data to backup, less time to do it)
- R/W operations on 4GFC HBAs show dramatic improvements with 98.5% real utilization on saturated lines
- Serial SCSI; FCP protocol
- Minimal error rates for network technology
- Credit-based flow control (no dropped frames)

Maximum Distance

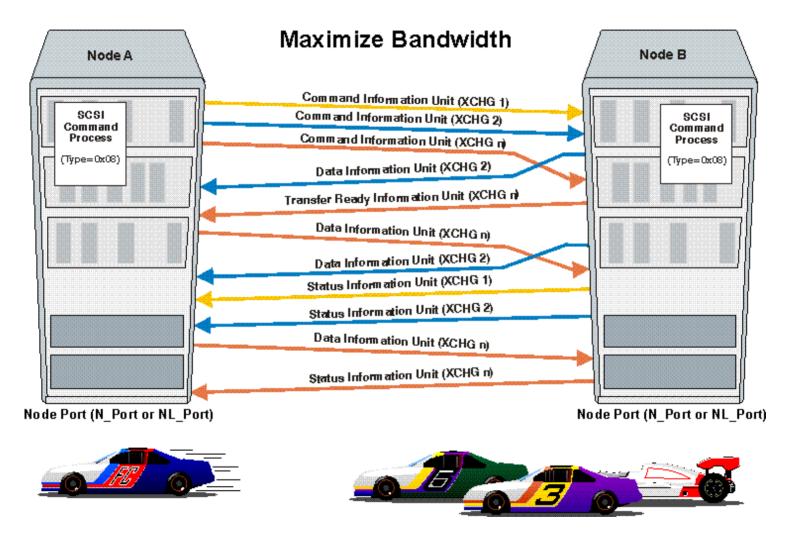
EDUCATION


Media Type	Transmitter	Speed	Distance	Variant
		400 MB/s	Om – 10m (typical)	400-DF-EL-S
Electrical (Differential)	ECL/PECL	200 MB/s	0m – 10m (typical)	200-DF-EL-S
(Differential)		100 MB/s	Om – 30m (typical)	100-DF-EL-S
		400 MB/s	2m - >50km	400-SM-LL-V
	1550 nm. Long wave Laser	200 MB/s	2m - >50km	200-SM-LL-V
9 um. Single-Mode Fiber		100 MB/s	2m - >50km	100-SM-LL-V
	1300 nm. Long wave Laser	400 MB/s	2m - 2km	400-SM-LL-I
		200 MB/s	2m - 2km	200-SM-LL-I
		100 MB/s	2m - 10km	100-SM-LL-L
			2m - 2km	100-SM-LL-VI
		400 MB/s	0.5m - 175m	400-M5-SN-I
50 um. Multi-Mode Fiber		200 MB/s	0.5m - 300m	200-M5-SN-I
	SEO mm. Chart ways I as an	100 MB/s	0.5m - 500m	100-M5-SN-I
62.5 um. Multi-Mode Fiber	850 nm. Short-wave Laser	400 MB/s	0.5m - 70m	400-M6-SN-I
		200 MB/s	0.5m - 150m	200-M6-SN-I
		100 MB/s	0.5m - 300m	100-M6-SN-I

- 2 Km distance with Multi- mode Fibre
- 10 Km distance with Single Mode Fibre
- 5000 Km distance with FC over IP

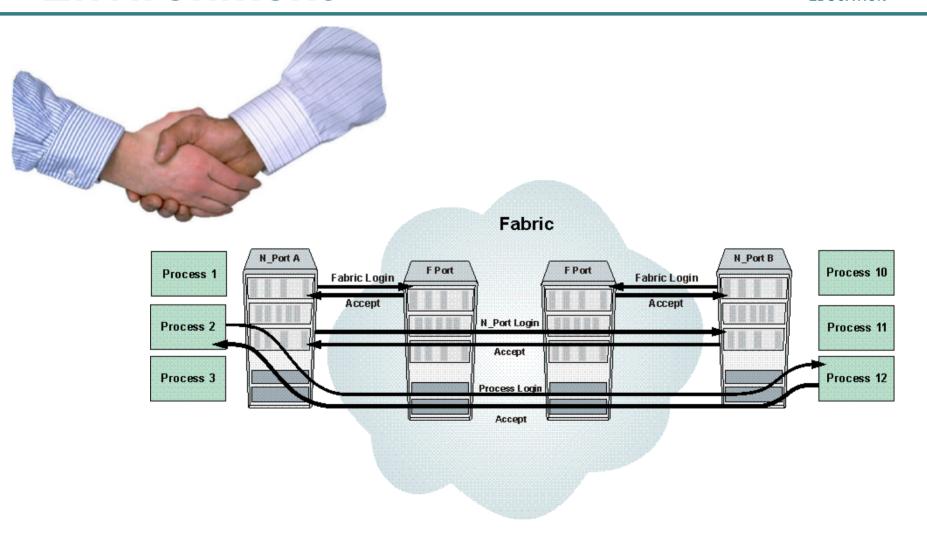
Frames

EDUCATION


Frame type and content/function
Class-specific control information
Protocol Type in this frame
Sequence this frame belongs to
Originator Exchange ID
Multi-purpose parameter field

- Flexibility
 - Fly by Frame handling
 - Out of order
- Speed
- Routing

Data Traffic with Exchanges


EDUCATION

Establishing Operating Environment

EDUCATION

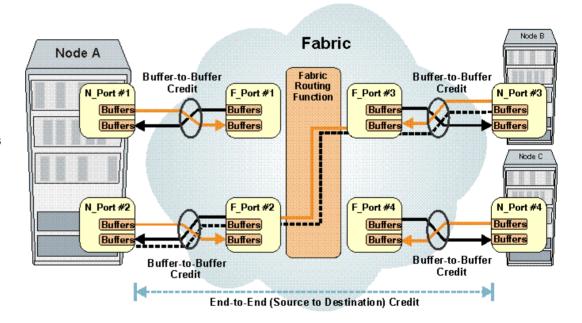
Flow Control: Access Control, Latency, and Efficiency

EDUCATION

Login Buffer to Buffer

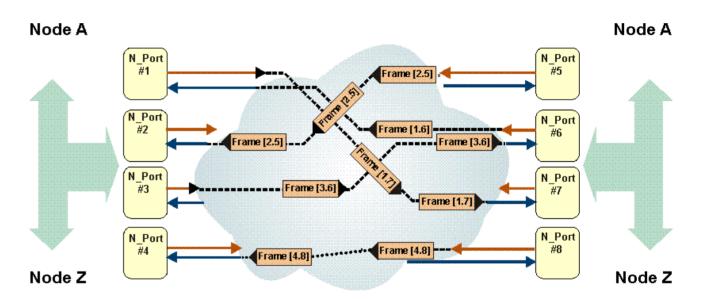
- Node to Fabric
- Fabric to Node

Login Node to Node

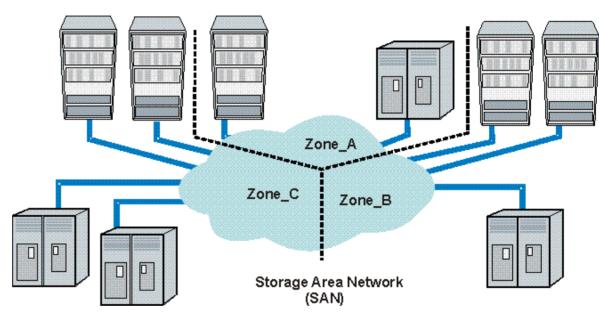

Flow control is credit based

- Buffer-To-Buffer Credit
- Control pace of frame transmission
- Each R_RDY received increments the available BB Credit value

Latency


 Across a single switch, average latencies are less than 400 nanoseconds.

FC Routing



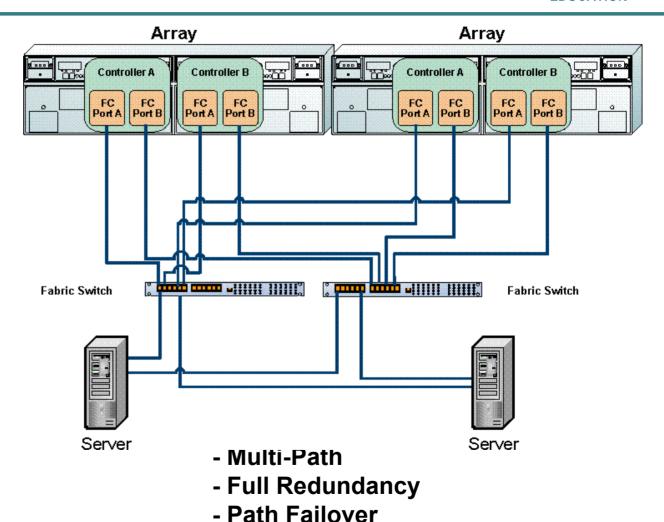
- Connect Any to Any
- Maximize Connectivity
- Simplex and Duplex

FC Access Control

EDUCATION

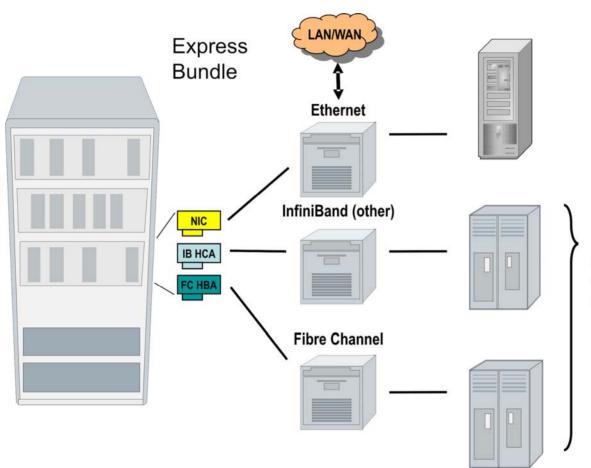
Divide

Provide Accessibility


Soft Zoning: Employs the Name Server to limit the information returned

to an initiator in response to a query. Hard Zoning: Enforced by the Fabric

Redundancy, Availability, and Failover


EDUCATION

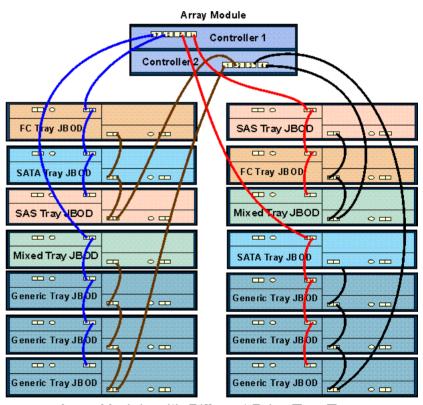
FC Products Dominant in Enterprise Datacenter

EDUCATION

NAS File Storage (TCP/IP)

RAID Storage

- · FC Dominates Front End
- · IB Opportunity in HPC/DB
- · FC Dominates Back End
 - · SATA HDA with FC IO
 - FC-SATA for Tier 2 Apps
 - FC Front end SAS Backend
 - Mixed


Detailed RAID Storage: Array Module with Different Drive Technologies

EDUCATION

There's a lot more under the Fibre Channel hood than appearances reveal:

Array Module with Different Drive Tray Types

FC Product Performance – IOPS: Host Interface – Drive Interface

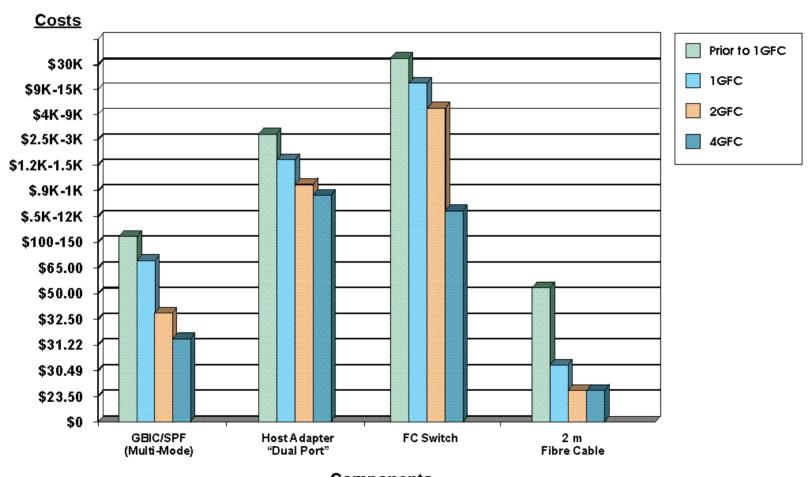
EDUCATION

	Drive Type	Dual 4 GFC	Quad 4 GFC	Future 8 GFC
Burst I/O rate cache reads (512 byte)		125K	125K	200K
Sustained I/O rate disk reads (4k – R5)	FC	40k	40k	80K
	SAS			70K
	SATA			12K
Sustained I/O rate disk writes (4k- R5) - CMD	FC	9k	9k	15K
	SAS	8K	10K	12K
	SATA	2K	2K	4K
Number of drives required for benchmark test and code thread	FC, SAS, / SATA	96D / 8T	96D / 8T	96D / 8T

- FC continues to evolve with different technologies

FC Product Performance – MB/sec

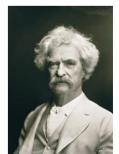
EDUCATION


	Drive Type	Dual FC	Quad FC	Future 8 GFC
Sustained throughput cache read (512k)		1600 MB/s	1800 MB/s	3000 MB/s
Sustained throughput disk read (512k)	FC	850 MB/s	850 MB/s	1600MB/s
	SAS	800 MB/s	800 MB/s	1200 MB/s
	SATA	800 MB/s	800 MB/s	900 MB/s
Sustained throughput disk write (512k)	FC	800 MB/s	800 MB/s	1600 MB/s
Cache mirroring disabled	SAS	750 MB/s	750 MB/s	750 MB/s
Cache mirroring disabled	SATA	750 MB/s	750 MB/s	750 MB/s
Number of drives required for benchmark test and code thread	FC	48D / 8T	48D / 8T	48D / 8T

- FC continues to evolve with different technologies

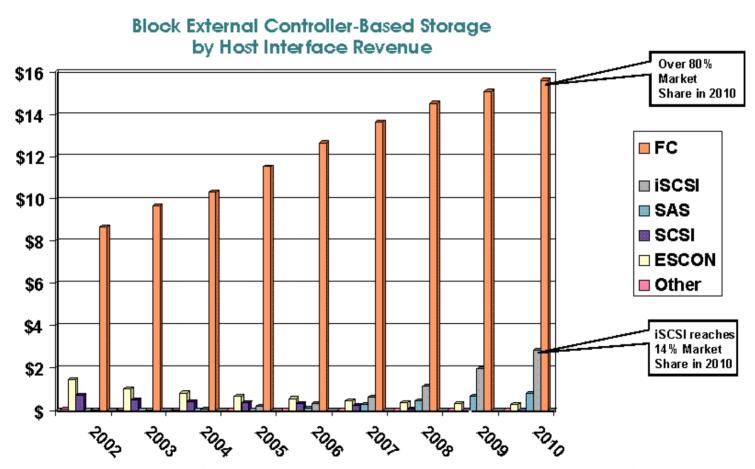
Current Cost Comparison Table

EDUCATION


Components

Fibre Channel is Here to Stay.

EDUCATION



The report of my death was an exaggeration.

Continuous SAN Market Growth

EDUCATION

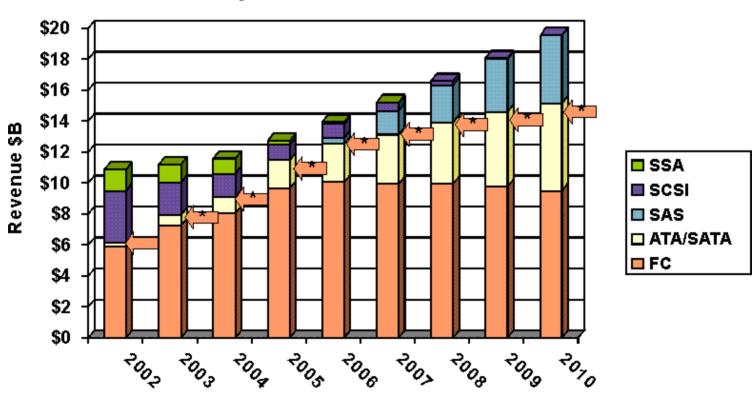
Source: Gartner External Controller-Based Disk Storage WW 2006-2010, 6 October 2006 (FICON included in Fibre Channel)

Fibre Channel's Continuous Evolution

FC has been the major storage system interconnect since the mid 90s

FC dominates the SAN and external storage market place

How will FC continue to Meet customers' evolving needs?


- Faster speeds
- Bandwidth/Cost leadership
- Investment protection
- Additional capabilities
- Lower cost solutions
- Simplified solutions (Plug-n-play)

Continuous Back-End Market Growth

EDUCATION

Block External Controller-Based Disk Storage by HDD Interface Revenue

Source: Gartner External Controller-Based Disk Storage WW 2006-2010, 6 October 2006 (FICON Included in Fibre Channel)

* Estimate of FC+SATA over FC Infrastructure. Source: FCIA

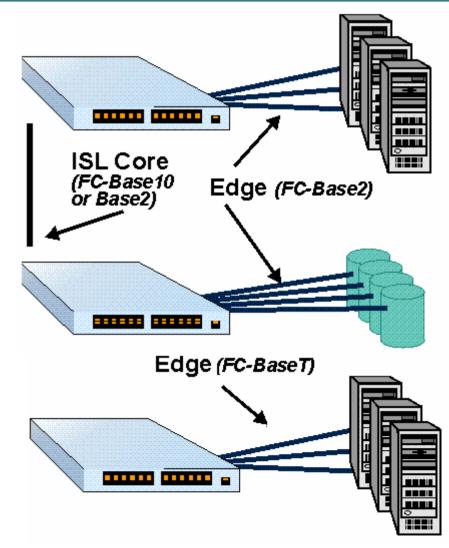
FCIA Fibre Channel Speeds – 3 Connection Types

EDUCATION

FC specifies 3 connection types

- FC-Base2
- FC-Base10
- FC-BaseT
- All speeds of each type Auto-negotiate best speed w/o any user intervention!
- Each speed within its connection type is backward compatible 2 generations!

FC-Base2


- Predominant FC interconnect
- Used for fabric Edge and ISL
- Also used for Disk and Tape Drives
- All speeds single lane serial streams
- Optics and copper cabling, SFP/SSF

FC-Base10

- Used for ISL (2.5x-3x bandwidth of edge)
- 4G Edge/10G ISL migrates to 8G Edge/20G ISL migrates to 16G Edge/40G ISL, etc

FC-BaseT

- FC using Cat5e/6/6a infrastructures
- Copper only (Cat5e/6/6a cables)
- RJ-45 connector
- User can use FC without changing any existing or new Ethernet cabling!

FCIA Fibre Channel Speed Roadmap

EDUCATION

Base2*

Product Naming	Throughput (MBps)	Line Rate (GBaud)†	T11 Spec Technically Completed (Year)‡	Market Availability (Year)‡
1GFC	200	1.0625	1996	1997
2GFC	400	2.125	2000	2001
4GFC	800	4.25	2003	2005
8GFC	1600	8.5	2006	2008
16GFC	3200	17	2009	2011
32GFC	6400	34	2012	Market Demand
64GFC	12800	68	2016	Market Demand
128GFC	25600	136	2020	Market Demand

Base10**

	10GFC	2400	10.52	2003	2004
	20GFC	4800	21.04	2007	2008
*	40GFC	9600	42.08	TBD	Market Demand
	80GFC	19200	84.16	TBD	Market Demand
	160GFC	38400	168.32	TBD	Market Demand

BaseT***

1GFC	200	1.0625	2006	2007
2GFC	400	2.125	2006	2007
4GFC	800	4.25	2006	2007
8GFC	1600	8.5	TBD	Market Demand
10GFC	2400	10.52	TBD	Market Demand

^{*}Base2 used throughout all applications for Fibre Channel infrastructure and devices. Each speed maintains backward compatibility at least two previous generations (I.e., 4GFC backward compatible to 2GFC and 1GFC)

^{**}Base10 commonly used for ISLs, core connections, and other high speed applications demanding maximum bandwidth.

^{***}BaseT used in common Ethernet copper infrastructures incorporating CAT5e/6/6a cables and RJ-45 connectors

[†]Line Rate: All Base2 speeds are single-lane serial stream ‡Dates: Future dates estimated

FCIA "Condensed" Roadmap (Speed Gb/s)

EDUCATION

FC-Base2 (Edge, Backend, and ISL)

- 1GFC, 2GFC, 4GFC shipping today
- 8GFC Ships in 12-18 months
- 16GFC, 32GFC, 64GFC, 128GFC

FC-Base10 (ISL)

- 10GFC shipping today
- 20GFC ships in 12-18 months
- 40GFC, 80GFC, 160GFC
 - 100GFC under study (leverage IEEE 802.3 work)

FC-BaseT (Edge)

- new 2006 standard for Ethernet RJ45 Cat5/6 copper)
- 1GFC, 2GFC, 4GFCF, ships in 12-18 months
- 8GFC, 10GFC
 - 8GFC follows typical FC trend
 - 10G follows typical Ethernet trend

Fibre Channel Is Being Improved **According To Real Customer** Requirements

- **New Fibre Channel Standards for**
 - Management And Ease Of Use
 - Operational Flexibility and **Scalability**
 - Security

EDUCATION

Management Improvements

Fabric Device Management Interface

- HBA Information Can Be Retrieved From The Fabric
- Fibre Channel Open Management
 - SMI-S
 - SNMP MIB Development
- Improvements to the Fabric Configuration Server
 - Advanced Topology Discovery and Bulk Data Retrieval
- Common Transport
 - Session Semantics Have Been Added
- Diagnostic Tools
 - FC Trace Route and Ping

Operational Flexibility

FAIS: Fabric Application Interface Specification

Allows fabric to host certain applications

Event Server

More Granular Event Registration

Virtual Channels

Enables Traffic Differentiation On Links

Enhanced Commit Service

Fabric Locking More Granular

Operational Flexibility

Frame Tagging

Enables Virtual Fabrics

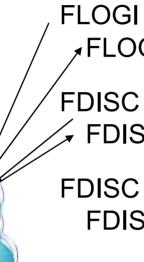
Routing Architectures and Models

 Allows Devices On Distinct Fabrics To Communicate Without a Merge

FC-SATA: SATA Tunneling over FC

- Brings native tiered storage to FC
- FC SATA: An FC-4 mapping of the Serial ATA storage interface protocol to Fibre Channel

Operational Flexibility


What Is NPIV?

- Acronym for N-port ID virtualization.
- Additional attribute of an F-port.
- FLOGI request allocated the base PID 0xddaa00.
- FDISC(SID=0) requests allocate virtual PIDs: 0xddaa01, 0xddaa02,
 0xddaa03 ...
- Used by multiple virtual machines emulated on a physical machine.

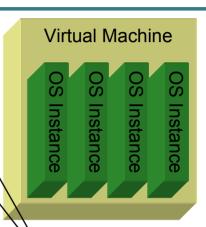
NPIV Overview

EDUCATION

FLOGI (FFFFFE, HWWNN, HWWPN) FLOGI ACC: Base PID: 0xddaa00

FDISC (SID=0, VWWNN1, VWWPN1)

FDISC ACC: VPID0: 0xddaa01

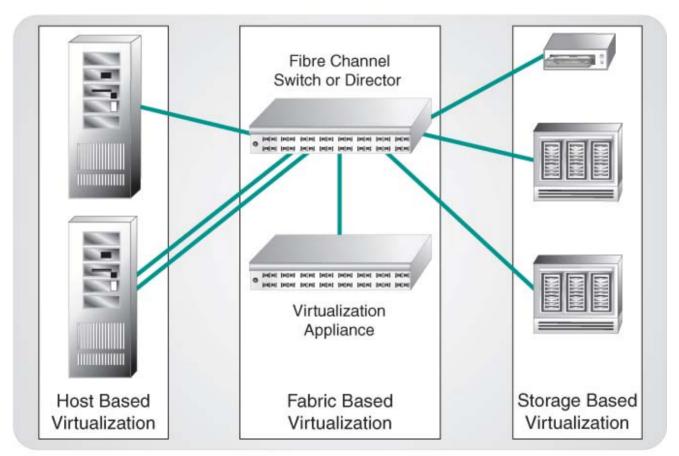

FDISC (SID=0, VWWNN2, VWWPN2)
FDISC ACC: VPID: 0xddaa02

FDISC (SID=0, VWWNN3, VWWPN3)

FDISC ACC: VPID: 0xddaa03

FDISC (SID=0, VWWNN4, VWWPN4)

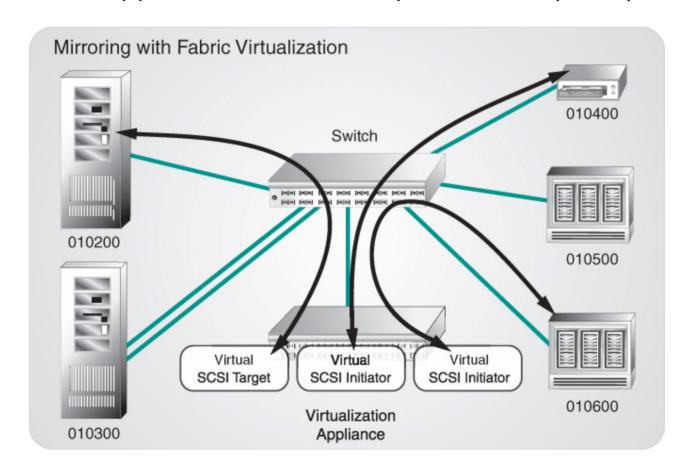
FDISC ACC: VPID: 0xddaa04



Storage Virtualization

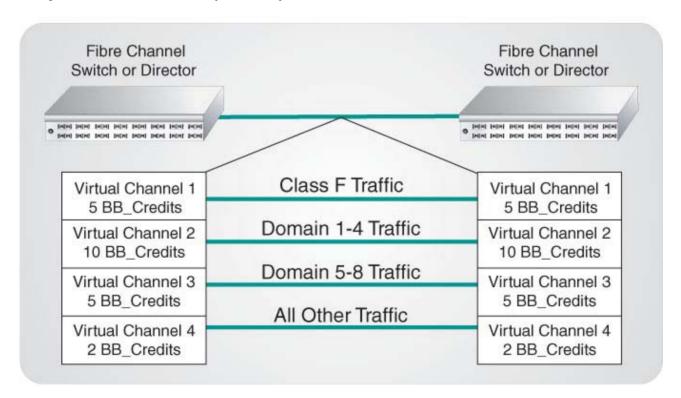
Three types of storage virtualization

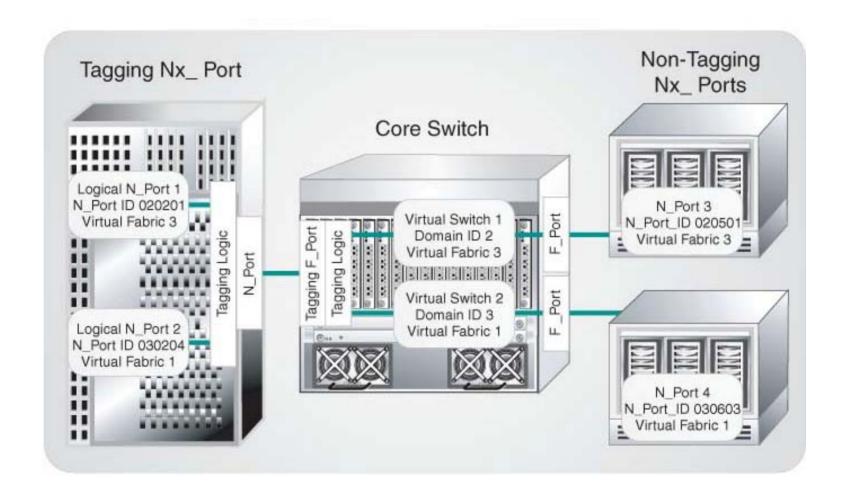
Refer to SNIA Virtualization Tutorials



EDUCATION

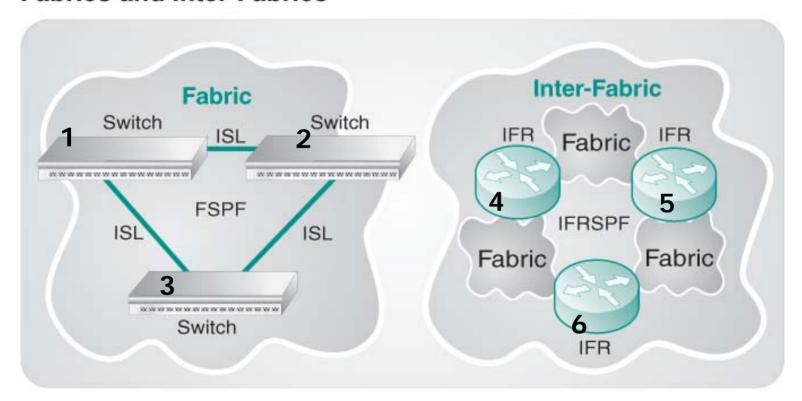
Fabric Based Virtualization


FC-Fabric Application Interface Specification (FAIS)


Virtual Channels

 ISL buffer credits are assigned to traffic flows to provide Quality of Service (QoS) between switches

Virtual Fabric Tagging

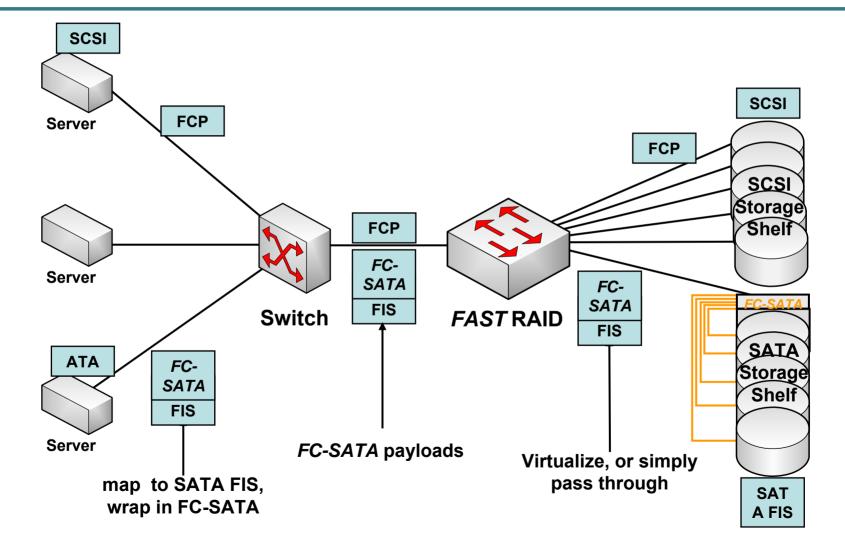


Inter-Fabric Routing

EDUCATION

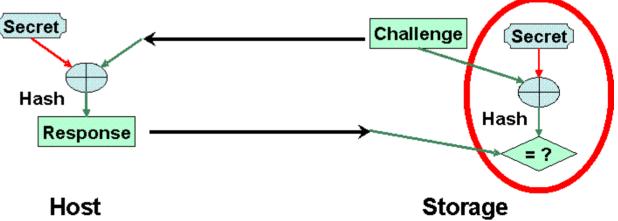
Fabrics and Inter-Fabrics

Layer 2 – Switching


FSPF = Fabric Shortest Path First ISL = Inter-Switch Link

Layer 3 – Routing

IFRSPF – Inter-Fabric Routing Shortest Path First IFR = Inter-Fabric Router Simple Routing


FC-SATA Configuration

Security

- FC-SP Has Completed Letter Ballot and Will Soon Be A Standard
- Addresses
 - Infrastructure (Passwords, PKI, Secrets)
 - Authentication (FCAP, DH-CHAP, FCPAP)
 - Authorization (Security Policies)
 - Data Integrity (Hash, Keyed-Hash, Signatures, ESP)
 - Confidentiality (ESP)
 - Policy Distribution

Refer to SNIA FC-SP Tutorial

Fibre Channel: The Storage of Business

Dominates the SAN market today

Fibre Channel has a clear roadmap to provide:

- Higher performance
- Additional capabilities (Security, Tiered Storage, Intelligence...)
- Enablers for new markets

Easy to learn, use and implement

Protects and future proofs storage investments

Comprehensive end to end solution

Fibre Channel Meets the Challenge

Q&A / Feedback

 Please send any questions or comments on this presentation to SNIA: tracknetworking@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Dr. M. K. Jibbe Skip Jones Steve Wilson Tom Hammod-Doel Howard Goldstein Robert Peglar

Continue Your SNIA Education Experience At SNW

EDUCATION

- Attend Hands-On Labs in:
 - Data Classification
 Key to Service Level Management
 - Data Security and Protection
 Data Assurance Solutions to Meet Corporate
 Requirements
 - ➤ IP Storage iSCSI, Your IP SAN
 - Storage Management
 Manage Storage or Be Managed By It
 - Storage Virtualization
 Increasing Productivity
 - Zero to SAN
 - Fibre Channel Connectivity in No Time

Sessions begin Monday afternoon, April 16 and continue through Wednesday, April 18.

All sessions in Emma/Maggie/Annie, 3rd Floor of the Hyatt Manchester.

Registration at the SNW Registration area